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ABSTRACT: The effective buoyancy per unit volume is the statically forced part of the local nonhydrostatic upward
pressure-gradient force. It is important because it does not depend on the basic-state density defined with the anelastic
approximation. Herein, an analytical solution is obtained for the effective buoyancy associated with an axisymmetric
column of less dense air. In special cases where the radial profiles of density are step functions, the analytical solutions rep-
licate qualitatively several features in a recently published numerical solution as follows. The effective buoyancy is positive
within the column of lighter air and negative outside. It increases from the axis to the inner edge of the column, then jumps dis-
continuously to a negative value and thereafter increases until it reaches zero at radial infinity. As the column radius increases,
the effective buoyancy on the axis decreases and the change in effective buoyancy between the axis and the inner edge
increases, but the jumpmagnitude is unaltered. For continuous radial density distributions that resemble step functions, the solu-
tions are similar except the cusps are rounded off and the jumps become smooth transition zones.

SIGNIFICANCE STATEMENT: In atmospheric convection, vertical accelerations are due to buoyancy forces and
vertical perturbation pressure-gradient forces. Separately, these forces depend on the choice of a basic state. To avoid
the ambiguity of an arbitrary reference atmosphere defining which parcels are buoyant, we define an effective-buoyancy
force per unit volume that is independent of any basic state. It is the part of the vertical nonhydrostatic pressure-gradient
force that depends solely on horizontal density variations. The remaining part of the vertical force is dynamical in origin;
it depends only on inertial forces. An analytical solution demonstrates that, for an axisymmetric column of lighter air,
effective buoyancy is greatest just inside the column edge and is most negative just outside the edge.
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1. Introduction

Davies-Jones (2003, hereafter DJ03) conceived the idea of
effective buoyancy, which has the important property of being
independent of an arbitrary base state. It is an important diag-
nostic for thermals (Tarshish et al. 2018), cumulus parameter-
izations in climate models (Pauluis and Garner 2006), tropical
cyclones (Smith and Montgomery 2022, hereafter SM22), and
density currents (Jeevanjee and Romps 2015, hereafter
JR15). It is equal to the “buoyancy forcing of vertical acceler-
ation,” which had been used earlier in diagnostics of supercell
simulations (e.g., Rotunno and Klemp 1982; Emanuel 1994,
p. 385) without explicit recognition that it is an absolute quan-
tity. Buoyancy forcing of vertical acceleration is comprised of
separate terms that depend on perturbations from an arbi-
trary base state. It is the sum of conventional buoyancy
(which depends on perturbation density) and a vertical per-
turbation pressure-gradient force (VPPGF). Thus conven-
tional buoyancy and VPPGF, both of which are used for
physical interpretation, are relative quantities (DJ03; Doswell
and Markowski 2004). They individually vary with the arbi-
trary choice of reference density and pressure profiles al-
though their sum does not. In contrast to buoyancy forcing of

vertical acceleration, effective buoyancy eliminates the need
for a base state.

Effective buoyancy per unit volume is defined as follows.
Pressure, p, may be split into local hydrostatic pressure, ph,
and local nonhydrostatic pressure pnh 5 p 2 ph. The nonhy-
drostatic vertical pressure-gradient force can then be divided
into a static part, 2­pb/­z, and a dynamic part, 2­pg/­z, ac-
cording to the forcing terms in the Poisson equation for non-
hydrostatic vertical pressure-gradient force. The static part,
b ≡ 2­pb/­z, is the effective buoyancy (DJ03).

The anelastic approximation, which eliminates sound
waves, is used in the derivations of effective buoyancy. Contra
to Einstein’s equivalence principle, the anelastic approxima-
tion uses a different density for inertia [the environmental or
base-state density at the parcel height r0(z)] than for gravity
(the parcel’s actual density r). The inertial density is, in gen-
eral, an arbitrary function of just height, z.

DJ03 showed that the effective buoyancy force per unit
volume (b) is independent of the horizontal location of the
density profile (i.e., the “environmental sounding”) and derived
its governing equation. Due to the inertial mass being margin-
ally different from the gravitational mass, effective buoyancy
per unit mass does depend slightly on the reference density as
indicated in section 2.

Pauluis and Garner (2006) implicitly used a control-volume
flux approach to eliminate the radial dependency from the
Poisson equation governing effective buoyancy. The control
volumes are thin horizontal slices of a column of air that is
less dense than its surroundings. They solved the resulting
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equation as a function of height using a Green’s function
method. They found that the effective buoyancy is much
smaller for a wide parcel than for a narrow one.

Jeevanjee and Romps (2016, hereafter JR16) considered
the effective buoyancies of a “free” cylindrical-shaped fluid
density anomaly in an infinite domain and of one based on
the ground in a semi-infinite domain. They assumed that the
density deficit within the cylinder is constant. JR16 were able
to obtain solutions only for the effective buoyancy along the
cylinder axis. They found that the axial effective buoyancy
was always smaller than the Archimedean buoyancy and that
it decreased with decreasing height-to-width (aspect) ratio of
the cylinder. [The Archimedean buoyancy force is defined as
the upward force exerted upon a parcel of fluid in a gravita-
tional field by virtue of the density difference between the par-
cel and that of the surrounding fluid (Glickman 2000; Doswell
and Markowski 2004).]

As easily predicted by the method of images (DJ03), the
effective buoyancy of the surface-based cylinder is less than
for the free cylinder. Tarshish et al. (2018) showed that the
effective buoyancy of a thermal also decreases with aspect
ratio. This result is anticipated by the linear theory of thermal
convection (Saltzman 1962). Wide flat convective cells are
less efficient at transporting heat than narrow tall ones be-
cause a greater proportion of the potential energy is con-
verted into horizontal kinetic energy rather than vertical
kinetic energy. If there were no dissipation, the most unstable
convective cells would be infinitely narrow. In a real fluid, en-
ergy dissipation is largest for narrow cells so the most unstable
cells have finite width. In cumulus convection, the situation is
similar. Because entrainment-driven dilution depends in-
versely on radius, the narrowest convective elements quickly
lose their buoyancy through mixing with ambient air. On the
other hand, very wide updrafts have small effective buoyan-
cies. Hence the strongest convective updrafts have intermedi-
ate widths (Morrison 2017).

SM22 investigated the effective buoyancy per unit mass of
a finite column of less dense air. The density deficit within the
column varies sinusoidally with height and is constant in the
radial direction. The radial density profile is thus a step func-
tion. They found that the effective buoyancy is always positive
within the column. Even though the buoyancy itself is hori-
zontally uniform across the column, the effective buoyancy is
not. As the width of the buoyancy column increases, the effec-
tive buoyancy becomes smaller in the center of the column,
and the maximum effective buoyancy becomes located at the
inner edge of the column. In the environment, the effective
buoyancy is negative with a narrow sheath of strong negative
buoyancy at the outer edge of the column. Thus, the largest
values of effective buoyancy, both positive and negative, are
found just inside and outside the column edge.

The current paper is basically an extension of SM22’s work.
SM22 presented numerical solutions for the effective buoy-
ancy associated with a two-dimensional slab of less dense
fluid. This paper obtains analytical solutions for the effective
buoyancy of a cylindrical column of less dense fluid and, in
some cases, for continuous radial density profiles. In contrast
to SM22’s problem, there are no side boundaries and the

buoyant column extends all the way from the ground to the
top boundary. Analytical solutions are important because
they apply for all parametric values, not just a select few. The
analytical solutions based on DJ03 theory successfully repli-
cate the qualitative features of SM22’s numerical solutions.

The paper is organized as follows. Section 2 summarizes
the DJ03 analysis for reference in later sections. An analytical
solution for the effective buoyancy of a density field with a
sinusoidal vertical profile is obtained in section 3. This solution
is tailored for a column of less dense air in section 4. Section 5
presents the effective-buoyancy solution for a radial density
profile that is continuous instead of a step function.

2. The DJ03 theory revisited

For later reference we derive the theory of effective buoy-
ancy without introducing an unnecessary base state and per-
turbations. The anelastic Euler equation of motion and the
continuity equation are

r0
­u

­t
1 r0u · =u 5 2=p 2 grk, (1)

= · (r0u) 5 0, (2)

where r is the gravitational density, r0(z) is the inertial den-
sity, z is height above ground, u is the wind vector, and k is
the unit upward vector. By taking the divergence of (1) and
using (2), we obtain the diagnostic pressure equation:

2=2p 5 g
­r

­z
1 = · (r0u · =u): (3)

In DJ03 the pressure, p, is split into a local hydrostatic compo-
nent ph for which

­ph
­z

5 2gr (4)

and a nonhydrostatic component pnh 5 p 2 ph. Inserting this
pressure decomposition in (3) and introducing (4) produces

2=2pnh 5 =2ph 1 g
­r

­z
1 = · (r0u · =u) 5 =2

Hph 1 = · (r0u · =u):
(5)

Differentiating (5) with respect to z and using (4) again gives

=2 2
­pnh
­z

( )
5 2g=2

Hr 1
­

­z
= · (r0u · =u): (6)

By inserting the pressure decomposition into the vertical com-
ponent of (1) and using (4), we obtain

r0
­w
­t

1 r0u · =w 5 2
­pnh
­z

, (7)

where w is the vertical velocity. At the ground (z 5 0) and
at a solid top boundary (z 5 h), w 5 0 so ­pnh/­z 5 0 there.
Given the current density field, the current wind field and
its tendency, we can solve the Poisson Eq. (6) subject to
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­pnh/­z 5 0 at horizontal boundaries. In this formulation,
the dependent variable is the vertical force, 2­pnh/­z,
and the boundary conditions (BCs) are Dirichlet ones for
this variable. The forcing function consists of a static
forcing and a dynamic forcing [the first and second terms
on the right of (6), respectively]. After decomposing the
vertical force per unit volume 2­pnh/­z into its static part
b and its dynamic part g, the vertical equation of motion
becomes

r0
dw
dt

5 b 1 g: (8)

Since the boundary-value problem is linear, we can split it as
follows:

2=2b 5 g=2
Hr, b 5 0 at z 5 0, h, (9)

=2g 5
­

­z
= · (r0u · =u), g 5 0 at z 5 0, h: (10)

The effective-buoyancy equation is the one in (9). The forcing
function for effective buoyancy is g=2

Hr. Adding (9) and (10)
recovers (6) and the BCs on ­pnh/­z. Clearly b is the part of
the vertical force that depends on horizontal variations in
gravitational mass and is independent of inertial mass,
whereas g depends on inertial forces. If ­pnh/­z Þ 0 on any
part of the domain boundaries, then there is also a third part,
«, namely, the solution of the Laplace equation =2« 5 0 sub-
ject to the BCs.

The effective buoyancy is an absolute quantity because the
forcing function in (9) is independent of the reference density.
Hence there is no need to complicate its derivation by intro-
ducing a reference density and deviations from it.

From (8) the parcel vertical acceleration due to b is b/r0,
which equals [1 1 (r 2 r0)/r0]b/r for small (r 2 r0)/r0. Thus
the effective buoyancy per unit mass, b/r0, does depend
slightly on the base state. However, the radial variations of ef-
fective buoyancy per unit mass and effective buoyancy per
unit volume will be similar because r0 is a function of height
only.

Davies-Jones (2002) considered the effects of horizontal varia-
tions in the dynamical nonhydrostatic vertical pressure-gradient
force (i.e., g) on the tilting and propagation of supercell updrafts.
Among other results he found that wider updrafts are less prone
to bending over in strong vertical shear. This paper only concerns
b, the effective buoyancy.

3. Some solutions for effective buoyancy

For simple geometries and specified density distributions,
we can obtain solutions of the boundary-value problem (9)
for b via separation of variables. Here we assume axisymmet-
ric density fields of the form

r(x, z) 5 S(z) 1 s(x)sin(pz/h), (11)

where r is the radial coordinate and x ≡ pr/h is a scaled radial
coordinate (not a Cartesian coordinate). This decomposition
is somewhat arbitrary because

r(x, z) 5 Ŝ(z) 1 ŝ(x)sin(pz/h),
where Ŝ(z) ≡ S(z) 1 s0sin(pz/h),

ŝ(x) ≡ s(x) 2 s0

(12)

has the same mathematical form as (11) for any constant s0.
Inserting (11) into (9) yields

=2
Hb 1

­2b

­z2
5 2g=2

Hs(x)sin
pz
h

, b 5 0 at z 5 0, h, (13)

so the governing equation for b is independent of S(z) and
s0. At the axis of very narrow columns of less dense
air, |=2

Hb|.. |­2b/­z2|, and the solution of (13) there is
approximately

b(0, z) ≈ g[s(‘) 2 s(0)]sin(pz/h) (14)

if we assume that b(‘, z) 5 0. Thus the difference between b

and buoyancy per unit volume vanishes at the axis in the limit
of an infinitely narrow column. In the opposite extreme of a very
wide column with a flat density minimum, |=2

Hb|,, |­2b/­z2| at
the axis and

b(0, z) ≈ gh2

p2 (=2
Hs)(0)sin(pz/h): (15)

In this case, the effective buoyancy at the central axis tends to
01 as the column width tends to ‘.

To separate variables, we look for solutions of (13) that
have the form

b(x, z) 5 E(x)sin(pz/h): (16)

In terms of x, we may write the operator =2
H as

=2
H 5

p2

h2
1
x

d
dx

x
d
dx

( )
: (17)

Introducing (16) and (17) into (13) yields

d
dx

x
d(E 1 gs)

dx

[ ]
2 (E 1 gs)x 5 2gsx: (18)

By adding the constant gs(‘), to both sides of (18) and defin-
ing y(x) ≡ E(x) 1 gs(x) 2 gs(‘) as the dependent variable,
we obtain

L(y) ≡ d
dx

x
dy
dx

( )
2 xy 5 2g[s(x) 2 s(‘)]x: (19)

The homogeneous version of (19), L(y) 5 0, is a modified
Bessel equation with the general solution

y(x) 5 c1I0(x) 1 c2K0(x), (20)

where In and Kn are modified Bessel functions of integer or-
der n of the first and second kind, respectively, and c1 and c2
are constants. Relevant identities involving the modified Bes-
sel functions are listed in the appendix for reference.
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We obtain the solution of the inhomogeneous Eq. (19) by
the Green’s function method (Hildebrand 1965, 228–231).
The basic method depends on homogeneous BCs. For our
problem we choose

dy/dx 5 0 at x 5 0, y 5 0 at x 5 ‘ (21)

based on axisymmetry at the axis and E 5 0 at radial infinity.
The solution is of the form

y(x) 5
�‘

s50
G(x, s)g[s(s) 2 s(‘)]s ds, (22)

where the Green’s function

G(x, s) ≡ G1(x, s) for x , s

G2(x, s) for x . s:

{
(23)

For (23) to be a solution of the boundary-value problem (19) and
(21), the following conditions must hold (Hildebrand 1965, p. 229):

1) L(G1) 5 0 when x , s and L(G2) 5 0 when x . s.
2) G1 and G2 must obey the given BCs, viz dG1/dx 5 0 at

x 5 0, G2 5 0 at x 5 ‘.
3) G is continuous so G1 5 G2 at x 5 s.
4) dG2/dx 2 dG1/dx 5 21/x at x 5 s.

Suppose that

G(x, s) 5 G1(x, s) 5 I0(x)K0(s) for x , s,

G(x, s) 5 G2(x, s) 5 K0(x)I0(s) for x . s:
(24)

The first and third conditions are met because I0 and K0 are
solutions of L(y)5 0 [see (20)] andG is obviously continuous.
By (A3), (A4), and (24),

­G1

­x
5 I1(x)K0(s) for x , s,

­G2

­x
5 2K1(x)I0(s) for x . s:

(25)

Since I1(0) 5 0 and K1(‘) 5 0, the second condition is met.
At x5 s,

dG2

dx
2

dG1

dx
5 2I0(x)K1(x) 2 I1(x)K0(x): (26)

According to (A18) the right side is the Wronskian, W(x), of
I0(x) and K0(x), which is equal to 21/x by (A19) so the fourth
condition is fulfilled. Therefore by introduction of (24) into
(22), the solution for the effective buoyancy radial profile is

E(x) 5 2g[s(x) 2 s(‘)] 1 K0(x)
�x

s50
sI0(s)g[s(s) 2 s(‘)]ds

1 I0(x)
�‘

s5x
sK0(s) g[s(s) 2 s(‘)]ds: (27)

Ostensibly, (27) indicates that E(x) depends on s(‘). How-
ever, this is not the case because we can eliminate s(‘) by
adding gs(‘) times (A21) to (27). This yields

E(x) 5 2gs(x) 1 K0(x)
�x

s50
sI0(s)gs(s)ds

1 I0(x)
�‘

s5x
sK0(s)gs(s)ds: (28)

To simplify explanations later on, we subtract gs(0) times
(A21) from (28) and divide the result by g[s(‘) 2 s(0)],
which gives us

E*(x) 5 2s*(x) 1 K0(x)
�x

s50
sI0(s)s*(s)ds

1 I0(x)
�‘

s5x
sK0(s)s*(s)ds, (29)

where s*(x) ≡ [s(x)2 s(0)]/[s(‘)2 s(0)] is a nondimensional
deviation of density from its axial value at the same level, and
E* ≡ E/g[s(‘)2 s(0)] is the nondimensional effective buoy-
ancy radial profile (NEBRP). By (16), (24), and (29), the non-
dimensional effective buoyancy (NEB) b* ≡ b/g[s(‘)2 s(0)]
is given by

b*(x, z) 5 E*(x)sin(pz/h)

5 2s*(x) 1
�‘

s50
G(x, s)s*(s)s ds

[ ]
sin(pz/h): (30)

In dimensional terms,

b(x, z) 5 2gs(x)sin(pz/h) 1 sin(pz/h)
�‘

s50
G(x, s)gs(s)s ds:

(31)

Hildebrand (1965, p. 242) provides the physical interpretation
of the Green’s function, which is customized to solution (30) as
follows. Since sin(pz/h) is a common factor in (30), we may re-
strict our attention to the relationship between E* and s* at
one level. The differential effect on the variable E* 1 s* at a
field point x due to a cause s*(s) distributed over the infinitesi-
mally thin annulus of influence points defined by inner and
outer radii s and s 1 ds is G(x, s)s*(s)s ds. Hence the Green’s
functionG(x, s) represents the effect on the dependent variable
at the field point x due to a unit cause concentrated at the influ-
ence circle s. The solution (30) is the sum of the effects at x in-
duced by the causes from all the influence circles, s.

4. Solution for a step function radial density profile

In this section, we suppose that the nondimensional excess-
density radial profile is a step function of the form

s*(x) 5 H(x 2 X), (32)

where the Heaviside step function

H(x 2 X) ≡
0 for x , X
0:5 for x 5 X
1 for x . X

;
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩ (33)

X ≡ pR/h where R is the radius of the column of less dense
air and h/R is an aspect ratio. Note that r 5 R where x 5 X
and the jump in s* at the column edge is 1.
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Inserting (32) and (33) into (30) yields

E*(x) 5 2H(x 2 X) 1
�‘

s50
G(x, s)H(s 2 X)s ds

5

�‘

s5X
G(x, s)s ds for x , X

2 1 1

�‘

s5X
G(x, s)s ds for x . X

,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(34)

and then introducing (24) produces

E*(x) 5
I0(x)

�‘

s5X
sK0(s)ds for x , X

211K0(x)
�x

s5X
sI0(s)ds1 I0(x)

�‘

s5x
sK0(s)ds for x.X:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(35)

With use of (A7), (A8), (A14), and (A20), this simplifies to

E*(x) 5
XK1(X)I0(x) for x , X

2XI1(X)K0(x) for x . X:

{
(36)

Thus the NEBRP depends on the functions I0(x), I1(x),
xK0(x), and xK1(x), which are graphed in Fig. 1. We evaluated
these functions using Press et al.’s (1992, 230–233) code for
the modified Bessel functions I0(x), I1(x), K0(x), and K1(x).
This code uses formulas from Abramowitz and Stegun (1964).
It was converted to Fortran 90 and slightly modified to pro-
vide xK0(x) and xK1(x) for all x $ 0 instead of K0(x) and
K1(x) for x. 0. Because K0(x) and K1(x) are infinite at x 5 0,
they were not used without the multiplier x.

The NEBRP in (36) varies with the nondimensional radial
coordinate r/h (≡x/p) as shown in Fig. 2. The various graphs

are for different column aspect ratios h/R. NEBRP is positive
inside the column and negative outside. It increases from its
axial value

E*(0) 5 XK1(X) (37)

to its maximum value just inside the column edge (SM22;
JR15),

E*(X2) 5 XI0(X)K1(X), (38)

jumps to its minimum value

E*(X1) 5 2XI1(X)K0(X), (39)

and then decays to zero at x5 ‘. At x5 X, the NEBRP has a
discontinuity of magnitude

E*(X1) 2 E*(X2) 5 2X[I1(X)K0(X) 1 I0(X)K1(X)]
5 XW(X) 5 21 (40)

from (A20). Similar behavior is evident in SM22’s Fig. 4,
which is for slab (2D) symmetry instead of axisymmetry. The
variations in the analytical solutions with column radius are
similar to the variations of SM22’s numerical solutions with
slab width. Since

s*(X1) 2 s*(X2) 5 1 (41)

from (32) and (33), it is evident from (40) that E* 1 s* is
continuous at x 5 X. The jump in E* is equal and opposite
to the one in s*. Since the jump is always 21 for all aspect
ratios and the maximum E* decreases with R/h, the negative
extremum become larger in magnitude with decreasing

FIG. 1. Graphs of the Bessel-related functions: I0(x), I1(x), xK0(x),
xK1(x), and2xW(x).

FIG. 2. Nondimensional effective-buoyancy radial profile
E* (NEBRP) as a function of r/h for columns of nondimensional
radii R/h 5 0.1, 0.3 and 0.5. As R/h → 0 and the column becomes
very thin, E* → 1 inside the column and E* → 0 outside it.
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aspect ratio. Taking the derivative of (36) and applying
(A3) and (A4) yields

dE*(x)
dx

5
XK1(X) I1(x) for x , X

XI1(X)K1(x) for x . X:

{
(42)

As evident in Fig. 2, the horizontal gradient of NEBRP is
zero at the axis and radial infinity, continuous at the column
edge, and nonnegative. In contrast to the above behavior,
Tarshish et al. (2018) found that for ellipsoidal density anoma-
lies b is uniform within the anomaly.

Figure 3 shows how the NEBRP on the axis and at the in-
ner and outer sides of the column varies with column radius.
From (37), (A12), and (A14), the NEBRP at the axis de-
creases from 1 to 0.1 to 0 as R/h increases from 0 to 1 to ‘

(see Fig. 3). In JR16, the variation for their surface cylinder
case is similar except the NEBRP is 0.25 at R/h 5 1 (their
Fig. 4). In JR16 the presence of a lower boundary reduces
the NEBRP by half. Herein, there is also an upper bound-
ary so it is reasonable to expect a further 50%, which would
make the present and JR16 values comparable. The maxi-
mum NEBRP occurs at the column’s inner edge. From
(38), (A9), and (A12), it is 1 at X 5 0 and from (38), (A13),
and (A14), it tends to 0.5 as X → ‘. Owing to the negative
jump of 21 in NEBRP across the edge, the minimum
NEBRP at the outer edge decreases from 0 for X 5 0 to
20.5 at X 5 ‘.

In agreement with (14), (15), and previous studies (see in-
troduction), the effective buoyancy is slightly less than the
buoyancy for very narrow step function columns and for
very wide ones it is much less. The effective buoyancy just
inside the step function column edge decreases with column

radius and that just outside is more negative for wider col-
umns, as in SM22.

We now offer some explanation for the effective buoyancy
associated with the step function density distribution. Note
that we can concentrate just on the physics in the midlevel
plane since the effective buoyancy, b* 5 E*(x)sin(pz/h), and
the part of the density field that affects it, s*(x)sin(pz/h), at
other levels are simply sin(pz/h) multiples of their midlevel
counterparts. Contours of sG(x, s), which is the integrand in
(34), are plotted in Fig. 4. Since s* 5 0 inside the column and51
outside in this formulation, the density excesses are uniform in
strength and are located at influence points that are outside the
column. Points inside the column exert no influence. Because
there are no negative influences, the integrand is positive definite.
The influence region can be partitioned into annuli with inner
and outer radii s and s 1 ds with uniform thickness ds. In (34),
the factor s appears in the integrand because the number of
influence points per annulus increases linearly with s (if the
problem were discretized on a uniform grid). The integrations
in (34) at a fixed x, say x 5 0.2, are performed along the red
line, which extends from s 5 X, represented by the blue line,
to infinity.

We can visualize how the integral in (34) varies with x by
sliding the red line to different x. Clearly the integral in-
creases with x. Thus the effective buoyancy inside the col-
umn increases from the axis to the inner edge, and would
keep on increasing but for the jump of 21 at the edge [see
(34)]. Incorporating the jump produces the NEBRPs shown
in Fig. 2.

FIG. 3. Nondimensional effective-buoyancy radial profile as a
function of nondimensional column radius R/h for three different
radial locations, namely, on the axis, just inside the side of the cyl-
inder, and just outside the edge.

FIG. 4. Contour diagram of sG(x, s), the integrand in (34).
The contour interval is 0.1. The blue line s/p 5 R/h represents
the lower limit of the integrals in (34) (illustrated here for
R/h 5 0.5). The red line, which extends to infinity, is the path of
integration, which is from s 5 X to s 5 ‘ at fixed x (drawn here
for 0.2p).
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Similarly we can visualize the effect of varying the column
radius by sliding the blue line to different ordinate values
while keeping the red line anchored to it. As the column ra-
dius increases, the lower limit of the integral increases and the
integral decreases accordingly because the integrand is posi-
tive definite. Hence the effective buoyancy decreases at all ra-
dial distances as in Fig. 3.

A step function profile does not apply to wide high-speed
cumulonimbus updrafts whose columns contain undiluted in-
ner cores (Davies-Jones 1974) surrounded by an outer sheath
where entrained exterior air has penetrated (Nowotarski et al.
2020, see their Fig. 5d). Therefore we next assume a continu-
ous density profile.

5. Solution for a continuous radial density profile

A continuous nondimensional radial excess-density func-
tion that resembles a top-hat profile is provided by

s*(x) 5 1 2
1

1 1 (x/X)m , m$ 4: (43)

Since s*(0) varies from 0 at x 5 0 to 1 at x 5 ‘ and is 0.5 at
x/X 5 1 (or equivalently r/R 5 1), we still define R as the col-
umn radius. Asm increases the profile becomes increasingly like
a step function with the jump at x 5 X (Fig. 5). For m $ 4, the
functions have much sharper edges than the equivalent Gaussian
function 1 2 exp(2ax2), a 5 ln2, that also passes through the
common point (1, 0.5) of the curves (Fig. 5). The Gaussian func-
tion has the added disadvantage that it has only one parameter,
a, and so cannot be steepened without narrowing the column.

Figure 6 shows the nondimensional radial density profile
form5 8 and different column widths.

Introducing (43) into (29) produces

E*(x) 5 2 1 2
1

1 1 (x/X)m
[ ]

1 K0(x)
�x

s50
sI0(s) 1 2

1
1 1 (s/X)m

[ ]
ds

1 I0(x)
�‘

s5x
sK0(s) 1 2

1
1 1 (s/X)m

[ ]
ds: (44)

FIG. 5. Some functions that approximate the Heaviside step
function H[(x 2 1)/X]. The functions are 1 2 1/[1 1 (x/X)m] for
m 5 4, 8, and 16, and the complementary Gaussian function,
12 exp(20.69315x2).

FIG. 6. Nondimensional radial density profiles as a function of r/h
form5 8 and R/h5 0.1, 0.3 and 0.5.

FIG. 7. Nondimensional effective-buoyancy radial profile E* as a
function of r/h for the buoyancy profiles shown in Fig. 6.
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This simplifies to

E*(x) 5
1

1 1 (x/X)m 2 K0(x)
�x

s50

sI0(s)
1 1 (s/X)m ds

2 I0(x)
�‘

s5x

sK0(s)
1 1 (s/X)m ds (45)

by subtracting (A20). The integrals in (45) were computed to
an accuracy of 1024 with code from Press et al. (1992,
130–133). The second integral was calculated with an upper
limit of x5 25 instead of infinity.

Figure 7 shows the NEBRP as a function of r for the m 5 8
density profile and different column widths. The NEBRP now
changes sign from positive to negative just outside the nominal col-
umn edge. Essentially the curves in Fig. 7 are just smooth versions
of the ones in Fig. 2. The cusps are rounded off, and the jump has
become a smooth transition zone with a reduced amplitude.

The density field (minus a function of height) and its horizon-
tal Laplacian, =2

Hr, are shown in Fig. 8 for a nominal column ra-
dius R of 0.5 h andm5 8. From (9), =2

Hr is the forcing function
for effective buoyancy b. For the positive radial density gradient
depicted, =2

Hr is positive in an annular region just inside and
negative outside r 5 R. This pattern associates with positive b

just inside and negative b outside r5 R as shown in Fig. 9.

6. Summary

We assume axisymmetric density distributions in a domain
that extends radially to infinity and, using the DJ03 theory,

find solutions for the associated effective buoyancy per unit
volume. As proven by DJ03, the effective buoyancy per unit
volume is totally independent of the choice of a basic-state
density. For radial density profiles (11) that are step functions,
(36) provides analytical solutions for effective buoyancy.
These solutions qualitatively replicate in axisymmetric geom-
etry several features of SM22’s 2D numerical solution. For
continuous density profiles (43) that approximate (11), the
solutions (44) are just smooth versions of the corresponding
ones (36) for discontinuous density profiles.

The negative effective buoyancy at the column edge in
SM22’s numerical solutions and the analytical solutions herein
are consistent with data obtained by jet aircraft flying through
severe storms. These data reveal a descending sheath of air
surrounding the updraft core (Sinclair 1973).
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APPENDIX

Properties of Modified Bessel Functions

The following useful formulas involving modified Bessel
functions are listed here for reference in the main text. In

FIG. 8. The incomplete density field [s(x) 2 s(0)]sinpz/h (com-
plete apart from a function of height) and the =2

Hr field. The den-
sity contours are solid red with red labels, and are in units of gDs.
The contours start at 0.1 and the contour spacing is 0.2. The posi-
tive, zero, and negative contours of =2

Hr are solid magenta, solid or-
ange, and dashed green, respectively. The contours of this field are
in units of p2Ds/h2 with green labels and a contour interval of 1.

FIG. 9. Effective buoyancy field b. The positive, zero, and negative
contours of b are solid red, solid black, and dashed blue, respectively.
The b contours are in units of gDs with a contour interval of 0.05.
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the domain [0, ‘), I0(x) and I1(x) are monotonically in-
creasing functions with

I0(0) 5 1, I1(0) 5 0, I0(‘) 5 I1(‘) 5 ‘, (A1)

and K0(x) and K1(x) are monotonically decreasing functions with

K0(0) 5 K1(0) 5 ‘ K0(‘) 5 K1(‘) 5 0: (A2)

The properties of these modified Bessel functions are (Jeffrey
1995)

dI0(x)
dx

5 I1(x), (A3)

dK0(x)
dx

5 2K1(x), (A4)

d[xI1(x)]
dx

5 xI0(x), (A5)

d[xK1(x)]
dx

5 2xK0(x), (A6)

�x

s50
sI0(s)ds 5 xI1(x), (A7)

�‘

s5x
sK0(s)ds 5 xK1(x), (A8)

I0(x) → 1 as x → 0, (A9)

I1(x) →
x
2

as x → 0, (A10)

K0(x) →2ln(x/2) as x → 0, (A11)

xK1(x) → 1 as x → 0, (A12)

In(x) →
ex������
2px

√ as x → ‘ for n 5 0, 1,…, (A13)

Kn(x) →
����
p

2x

√
e2x → 0 as x → ‘ for n 5 0, 1,…: (A14)

According to L’Hôpital’s rule,

x lnx →2x as x → 0, (A15)

[ xK0(x) → 0 as x → 0: (A16)

The Wronskian W(x) of I0(x) and K0(x), is defined by

W(x) ≡ I0(x)
dK0(x)
dx

2
dI0(x)
dx

K0(x): (A17)

Inserting (A3) and (A4) produces

W(x) 5 2I0(x)K1(x) 2 I1(x)K0(x): (A18)

By Abel’s formula in Hildebrand (1965, p. 230) applied to
the modified Bessel equation or by formula (9.6.15) in
Abramowitz and Stegun (1964, p. 375),

W(x) 5 21/x, (A19)

[ 0 5 21 1 xI0(x)K1(x) 1 xI1(x)K0(x): (A20)

Introducing (A7) and (A8) into (A20) results in

0 5 21 1 I0(x)
�‘

s5x
sK0(s)ds 1 K0(x)

�x

s50
sI0(s)ds: (A21)
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